3.419 \(\int \cot ^2(c+d x) (a+b \tan (c+d x)) \, dx\)

Optimal. Leaf size=29 \[ -\frac{a \cot (c+d x)}{d}-a x+\frac{b \log (\sin (c+d x))}{d} \]

[Out]

-(a*x) - (a*Cot[c + d*x])/d + (b*Log[Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0397291, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {3529, 3531, 3475} \[ -\frac{a \cot (c+d x)}{d}-a x+\frac{b \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + b*Tan[c + d*x]),x]

[Out]

-(a*x) - (a*Cot[c + d*x])/d + (b*Log[Sin[c + d*x]])/d

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+b \tan (c+d x)) \, dx &=-\frac{a \cot (c+d x)}{d}+\int \cot (c+d x) (b-a \tan (c+d x)) \, dx\\ &=-a x-\frac{a \cot (c+d x)}{d}+b \int \cot (c+d x) \, dx\\ &=-a x-\frac{a \cot (c+d x)}{d}+\frac{b \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [C]  time = 0.115011, size = 51, normalized size = 1.76 \[ \frac{b (\log (\tan (c+d x))+\log (\cos (c+d x)))}{d}-\frac{a \cot (c+d x) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};-\tan ^2(c+d x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + b*Tan[c + d*x]),x]

[Out]

-((a*Cot[c + d*x]*Hypergeometric2F1[-1/2, 1, 1/2, -Tan[c + d*x]^2])/d) + (b*(Log[Cos[c + d*x]] + Log[Tan[c + d
*x]]))/d

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 37, normalized size = 1.3 \begin{align*} -ax+{\frac{b\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{\cot \left ( dx+c \right ) a}{d}}-{\frac{ac}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c)),x)

[Out]

-a*x+b*ln(sin(d*x+c))/d-a*cot(d*x+c)/d-1/d*a*c

________________________________________________________________________________________

Maxima [A]  time = 1.65016, size = 65, normalized size = 2.24 \begin{align*} -\frac{2 \,{\left (d x + c\right )} a + b \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 2 \, b \log \left (\tan \left (d x + c\right )\right ) + \frac{2 \, a}{\tan \left (d x + c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*(d*x + c)*a + b*log(tan(d*x + c)^2 + 1) - 2*b*log(tan(d*x + c)) + 2*a/tan(d*x + c))/d

________________________________________________________________________________________

Fricas [B]  time = 1.68379, size = 149, normalized size = 5.14 \begin{align*} -\frac{2 \, a d x \tan \left (d x + c\right ) - b \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right ) + 2 \, a}{2 \, d \tan \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*a*d*x*tan(d*x + c) - b*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c) + 2*a)/(d*tan(d*x + c))

________________________________________________________________________________________

Sympy [A]  time = 1.01651, size = 70, normalized size = 2.41 \begin{align*} \begin{cases} \tilde{\infty } a x & \text{for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (a + b \tan{\left (c \right )}\right ) \cot ^{2}{\left (c \right )} & \text{for}\: d = 0 \\- a x - \frac{a}{d \tan{\left (c + d x \right )}} - \frac{b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{b \log{\left (\tan{\left (c + d x \right )} \right )}}{d} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c)),x)

[Out]

Piecewise((zoo*a*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(a + b*tan(c))*cot(c)**2, Eq(d, 0
)), (-a*x - a/(d*tan(c + d*x)) - b*log(tan(c + d*x)**2 + 1)/(2*d) + b*log(tan(c + d*x))/d, True))

________________________________________________________________________________________

Giac [B]  time = 1.29164, size = 112, normalized size = 3.86 \begin{align*} -\frac{2 \,{\left (d x + c\right )} a + 2 \, b \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) - 2 \, b \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*(d*x + c)*a + 2*b*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 2*b*log(abs(tan(1/2*d*x + 1/2*c))) - a*tan(1/2*d*x
 + 1/2*c) + (2*b*tan(1/2*d*x + 1/2*c) + a)/tan(1/2*d*x + 1/2*c))/d